minieigen documentation¶
Overview¶
Todo
Something concise here.
Naming conventions¶
- Classes are suffixed with number indicating size where it makes sense (it does not make sense for minieigen.Quaternion):- minieigen.Vector3is a 3-vector (column vector);
- minieigen.Matrix3is a 3×3 matrix;
- minieigen.AlignedBox3is aligned box in 3d;
- Xindicates dynamic-sized types, such as- minieigen.VectorXor- minieigen.MatrixX.
 
- Scalar (element) type is suffixed at the end:- nothing is suffixed for floats (minieigen.Matrix3);
- iindicates integers (- minieigen.Matrix3i);
- cindicates complex numbers (- minieigen.Matrix3c).
 
- nothing is suffixed for floats (
- Methods are named as follows:- static methods are upper-case (as in c++), e.g. minieigen.Matrix3.Random;- nullary static methods are exposed as properties, if they return a constant (e.g. minieigen.Matrix3.Identity); if they don’t, they are exposed as methods (minieigen.Matrix3.Random); the idea is that the necessity to call the method (Matrix3.Random()) singifies that there is some computation going on, whereas constants behave like immutable singletons.
 
- nullary static methods are exposed as properties, if they return a constant (e.g. 
- non-static methods are lower-case (as in c++), e.g. minieigen.Matrix3.inverse.
 
- static methods are upper-case (as in c++), e.g. 
- Return types:- methods modifying the instance in-place return None(e.g.minieigen.Vector3.normalize); some methods in c++ (e.g. Quaternion::setFromTwoVectors) both modify the instance and return the reference to it, which we don’t want to do in Python (minieigen.Quaternion.setFromTwoVectors);
- methods returning another object (e.g. minieigen.Vector3.normalized) do not modify the instance;
- methods returning (non-const) references return by value in python
 
- methods modifying the instance in-place return 
Limitations¶
- Type conversions (e.g. float to complex) are not supported.
- Methods returning references in c++ return values in Python (so e.g. Matrix3().diagonal()[2]=0would zero the last diagonal element in c++ but not in Python).
- Many methods are not wrapped, though they are fairly easy to add.
- Conversion from 1-column MatrixXtoVectorXis not automatic in places where the algebra requires it.
- Alignment of matrices is not supported (therefore Eigen cannot vectorize the code well); it might be a performance issue in some cases; c++ code interfacing with minieigen (in a way that c++ values can be set from Python) must compile with EIGEN_DONT_ALIGN, otherwise there might be crashes at runtime when vector instructions receive unaligned data. It seems that alignment is difficult to do with boost::python.
- Proper automatic tests are missing.
Links¶
- http://eigen.tuxfamily.org (Eigen itself)
- http://www.launchpad.net/minieigen (upstream repository, bug reports, answers)
- https://pypi.python.org/pypi/minieigen (Python package index page, used by easy_install)
- packages:- Debian
- Ubuntu: distribution, PPA
 
Documentation¶
miniEigen is wrapper for a small part of the Eigen library. Refer to its documentation for details. All classes in this module support pickling.
- 
class minieigen.AlignedBox2¶
- Axis-aligned box object in 2d, defined by its minimum and maximum corners - 
__contains__((Vector2)arg2) → bool¶
- __contains__( (AlignedBox2)arg1, (AlignedBox2)arg2) → bool 
 - 
__getitem__((tuple)arg2) → float¶
- __getitem__( (AlignedBox2)arg1, (int)arg2) → Vector2 
 - 
__init__() → None¶
- __init__((AlignedBox2)other) → None - __init__((Vector2)min, (Vector2)max) → None 
 - 
static __len__() → int [STATIC]¶
 - 
__repr__() → str¶
 - 
__setitem__((tuple)arg2, (float)arg3) → None¶
- __setitem__( (AlignedBox2)arg1, (int)arg2, (Vector2)arg3) → None 
 - 
__str__() → str¶
 - 
center() → Vector2¶
 - 
clamp((AlignedBox2)arg2) → None¶
 - 
contains((Vector2)arg2) → bool¶
- contains( (AlignedBox2)arg1, (AlignedBox2)arg2) → bool 
 - 
empty() → bool¶
 - 
extend((Vector2)arg2) → None¶
- extend( (AlignedBox2)arg1, (AlignedBox2)arg2) → None 
 - 
intersection((AlignedBox2)arg2) → AlignedBox2¶
 - 
max¶
 - 
merged((AlignedBox2)arg2) → AlignedBox2¶
 - 
min¶
 - 
sizes() → Vector2¶
 - 
volume() → float¶
 
- 
- 
class minieigen.AlignedBox3¶
- Axis-aligned box object, defined by its minimum and maximum corners - 
__contains__((Vector3)arg2) → bool¶
- __contains__( (AlignedBox3)arg1, (AlignedBox3)arg2) → bool 
 - 
__getitem__((tuple)arg2) → float¶
- __getitem__( (AlignedBox3)arg1, (int)arg2) → Vector3 
 - 
__init__() → None¶
- __init__((AlignedBox3)other) → None - __init__((Vector3)min, (Vector3)max) → None 
 - 
static __len__() → int [STATIC]¶
 - 
__repr__() → str¶
 - 
__setitem__((tuple)arg2, (float)arg3) → None¶
- __setitem__( (AlignedBox3)arg1, (int)arg2, (Vector3)arg3) → None 
 - 
__str__() → str¶
 - 
center() → Vector3¶
 - 
clamp((AlignedBox3)arg2) → None¶
 - 
contains((Vector3)arg2) → bool¶
- contains( (AlignedBox3)arg1, (AlignedBox3)arg2) → bool 
 - 
empty() → bool¶
 - 
extend((Vector3)arg2) → None¶
- extend( (AlignedBox3)arg1, (AlignedBox3)arg2) → None 
 - 
intersection((AlignedBox3)arg2) → AlignedBox3¶
 - 
max¶
 - 
merged((AlignedBox3)arg2) → AlignedBox3¶
 - 
min¶
 - 
sizes() → Vector3¶
 - 
volume() → float¶
 
- 
- 
class minieigen.Matrix3¶
- 3x3 float matrix. - Supported operations ( - mis a Matrix3,- fif a float/int,- vis a Vector3):- -m,- m+m,- m+=m,- m-m,- m-=m,- m*f,- f*m,- m*=f,- m/f,- m/=f,- m*m,- m*=m,- m*v,- v*m,- m==m,- m!=m.- Static attributes: - Zero,- Ones,- Identity.- 
Identity= Matrix3(1,0,0, 0,1,0, 0,0,1)¶
 - 
Ones= Matrix3(1,1,1, 1,1,1, 1,1,1)¶
 - 
static Random() → Matrix3 [STATIC]¶
- Return an object where all elements are randomly set to values between 0 and 1. 
 - 
Zero= Matrix3(0,0,0, 0,0,0, 0,0,0)¶
 - 
__abs__() → float¶
 - 
__add__((Matrix3)arg2) → Matrix3¶
 - 
__div__((int)arg2) → Matrix3¶
- __div__( (Matrix3)arg1, (float)arg2) → Matrix3 
 - 
__eq__((Matrix3)arg2) → bool¶
 - 
__getitem__((int)arg2) → Vector3¶
- __getitem__( (Matrix3)arg1, (tuple)arg2) → float 
 - 
__iadd__((Matrix3)arg2) → Matrix3¶
 - 
__idiv__((int)arg2) → Matrix3¶
- __idiv__( (Matrix3)arg1, (float)arg2) → Matrix3 
 - 
__imul__((int)arg2) → Matrix3¶
- __imul__( (Matrix3)arg1, (float)arg2) → Matrix3 - __imul__( (Matrix3)arg1, (Matrix3)arg2) → Matrix3 
 - 
__init__() → None¶
- __init__((Quaternion)q) → None - __init__((Matrix3)other) → None - __init__((Vector3)diag) → object - __init__((float)m00, (float)m01, (float)m02, (float)m10, (float)m11, (float)m12, (float)m20, (float)m21, (float)m22) → object - __init__((Vector3)r0, (Vector3)r1, (Vector3)r2 [, (bool)cols=False]) → object 
 - 
__isub__((Matrix3)arg2) → Matrix3¶
 - 
__itruediv__((int)arg2) → Matrix3¶
- __itruediv__( (Matrix3)arg1, (float)arg2) → Matrix3 
 - 
static __len__() → int [STATIC]¶
 - 
__mul__((int)arg2) → Matrix3¶
- __mul__( (Matrix3)arg1, (float)arg2) → Matrix3 - __mul__( (Matrix3)arg1, (Matrix3)arg2) → Matrix3 - __mul__( (Matrix3)arg1, (Vector3)arg2) → Vector3 
 - 
__ne__((Matrix3)arg2) → bool¶
 - 
__neg__() → Matrix3¶
 - 
__repr__() → str¶
 - 
__rmul__((int)arg2) → Matrix3¶
- __rmul__( (Matrix3)arg1, (float)arg2) → Matrix3 - __rmul__( (Matrix3)arg1, (Vector3)arg2) → Vector3 
 - 
__setitem__((int)arg2, (Vector3)arg3) → None¶
- __setitem__( (Matrix3)arg1, (tuple)arg2, (float)arg3) → None 
 - 
__str__() → str¶
 - 
__sub__((Matrix3)arg2) → Matrix3¶
 - 
__truediv__((int)arg2) → Matrix3¶
- __truediv__( (Matrix3)arg1, (float)arg2) → Matrix3 
 - 
col((int)col) → Vector3¶
- Return column as vector. 
 - 
cols() → int¶
- Number of columns. 
 - 
computeUnitaryPositive() → tuple¶
- Compute polar decomposition (unitary matrix U and positive semi-definite symmetric matrix P such that self=U*P). 
 - 
determinant() → float¶
- Return matrix determinant. 
 - 
diagonal() → Vector3¶
- Return diagonal as vector. 
 - 
inverse() → Matrix3¶
- Return inverted matrix. 
 - 
isApprox((Matrix3)other[, (float)prec=1e-12]) → bool¶
- Approximate comparison with precision prec. 
 - 
jacobiSVD() → tuple¶
- Compute SVD decomposition of square matrix, retuns (U,S,V) such that self=U*S*V.transpose() 
 - 
maxAbsCoeff() → float¶
- Maximum absolute value over all elements. 
 - 
maxCoeff() → float¶
- Maximum value over all elements. 
 - 
mean() → float¶
- Mean value over all elements. 
 - 
minCoeff() → float¶
- Minimum value over all elements. 
 - 
norm() → float¶
- Euclidean norm. 
 - 
normalize() → None¶
- Normalize this object in-place. 
 - 
normalized() → Matrix3¶
- Return normalized copy of this object 
 - 
polarDecomposition() → tuple¶
- Alias for - computeUnitaryPositive.
 - 
prod() → float¶
- Product of all elements. 
 - 
pruned([(float)absTol=1e-06]) → Matrix3¶
- Zero all elements which are greater than absTol. Negative zeros are not pruned. 
 - 
row((int)row) → Vector3¶
- Return row as vector. 
 - 
rows() → int¶
- Number of rows. 
 - 
selfAdjointEigenDecomposition() → tuple¶
- Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals). eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3 with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose(). 
 - 
spectralDecomposition() → tuple¶
- Alias for - selfAdjointEigenDecomposition.
 - 
squaredNorm() → float¶
- Square of the Euclidean norm. 
 - 
sum() → float¶
- Sum of all elements. 
 - 
trace() → float¶
- Return sum of diagonal elements. 
 - 
transpose() → Matrix3¶
- Return transposed matrix. 
 
- 
- 
class minieigen.Matrix3c¶
- /TODO/ - 
Identity= Matrix3c(1,0,0, 0,1,0, 0,0,1)¶
 - 
Ones= Matrix3c(1,1,1, 1,1,1, 1,1,1)¶
 - 
static Random() → Matrix3c [STATIC]¶
- Return an object where all elements are randomly set to values between 0 and 1. 
 - 
Zero= Matrix3c(0,0,0, 0,0,0, 0,0,0)¶
 - 
__abs__() → float¶
 - 
__add__((Matrix3c)arg2) → Matrix3c¶
 - 
__div__((int)arg2) → Matrix3c¶
- __div__( (Matrix3c)arg1, (complex)arg2) → Matrix3c 
 - 
__eq__((Matrix3c)arg2) → bool¶
 - 
__getitem__((int)arg2) → Vector3c¶
- __getitem__( (Matrix3c)arg1, (tuple)arg2) → complex 
 - 
__iadd__((Matrix3c)arg2) → Matrix3c¶
 - 
__idiv__((int)arg2) → Matrix3c¶
- __idiv__( (Matrix3c)arg1, (complex)arg2) → Matrix3c 
 - 
__imul__((int)arg2) → Matrix3c¶
- __imul__( (Matrix3c)arg1, (complex)arg2) → Matrix3c - __imul__( (Matrix3c)arg1, (Matrix3c)arg2) → Matrix3c 
 - 
__init__() → None¶
- __init__((Matrix3c)other) → None - __init__((Vector3c)diag) → object - __init__((complex)m00, (complex)m01, (complex)m02, (complex)m10, (complex)m11, (complex)m12, (complex)m20, (complex)m21, (complex)m22) → object - __init__((Vector3c)r0, (Vector3c)r1, (Vector3c)r2 [, (bool)cols=False]) → object 
 - 
__isub__((Matrix3c)arg2) → Matrix3c¶
 - 
__itruediv__((int)arg2) → Matrix3c¶
- __itruediv__( (Matrix3c)arg1, (complex)arg2) → Matrix3c 
 - 
static __len__() → int [STATIC]¶
 - 
__mul__((int)arg2) → Matrix3c¶
- __mul__( (Matrix3c)arg1, (complex)arg2) → Matrix3c - __mul__( (Matrix3c)arg1, (Matrix3c)arg2) → Matrix3c - __mul__( (Matrix3c)arg1, (Vector3c)arg2) → Vector3c 
 - 
__ne__((Matrix3c)arg2) → bool¶
 - 
__neg__() → Matrix3c¶
 - 
__repr__() → str¶
 - 
__rmul__((int)arg2) → Matrix3c¶
- __rmul__( (Matrix3c)arg1, (complex)arg2) → Matrix3c - __rmul__( (Matrix3c)arg1, (Vector3c)arg2) → Vector3c 
 - 
__setitem__((int)arg2, (Vector3c)arg3) → None¶
- __setitem__( (Matrix3c)arg1, (tuple)arg2, (complex)arg3) → None 
 - 
__str__() → str¶
 - 
__sub__((Matrix3c)arg2) → Matrix3c¶
 - 
__truediv__((int)arg2) → Matrix3c¶
- __truediv__( (Matrix3c)arg1, (complex)arg2) → Matrix3c 
 - 
col((int)col) → Vector3c¶
- Return column as vector. 
 - 
cols() → int¶
- Number of columns. 
 - 
determinant() → complex¶
- Return matrix determinant. 
 - 
diagonal() → Vector3c¶
- Return diagonal as vector. 
 - 
inverse() → Matrix3c¶
- Return inverted matrix. 
 - 
isApprox((Matrix3c)other[, (float)prec=1e-12]) → bool¶
- Approximate comparison with precision prec. 
 - 
maxAbsCoeff() → float¶
- Maximum absolute value over all elements. 
 - 
mean() → complex¶
- Mean value over all elements. 
 - 
norm() → float¶
- Euclidean norm. 
 - 
normalize() → None¶
- Normalize this object in-place. 
 - 
normalized() → Matrix3c¶
- Return normalized copy of this object 
 - 
prod() → complex¶
- Product of all elements. 
 - 
pruned([(float)absTol=1e-06]) → Matrix3c¶
- Zero all elements which are greater than absTol. Negative zeros are not pruned. 
 - 
row((int)row) → Vector3c¶
- Return row as vector. 
 - 
rows() → int¶
- Number of rows. 
 - 
squaredNorm() → float¶
- Square of the Euclidean norm. 
 - 
sum() → complex¶
- Sum of all elements. 
 - 
trace() → complex¶
- Return sum of diagonal elements. 
 - 
transpose() → Matrix3c¶
- Return transposed matrix. 
 
- 
- 
class minieigen.Matrix6¶
- 6x6 float matrix. Constructed from 4 3x3 sub-matrices, from 6xVector6 (rows). - Supported operations ( - mis a Matrix6,- fif a float/int,- vis a Vector6):- -m,- m+m,- m+=m,- m-m,- m-=m,- m*f,- f*m,- m*=f,- m/f,- m/=f,- m*m,- m*=m,- m*v,- v*m,- m==m,- m!=m.- Static attributes: - Zero,- Ones,- Identity.- 
Identity= Matrix6( ( 1, 0, 0, 0, 0, 0), ( 0, 1, 0, 0, 0, 0), ( 0, 0, 1, 0, 0, 0), ( 0, 0, 0, 1, 0, 0), ( 0, 0, 0, 0, 1, 0), ( 0, 0, 0, 0, 0, 1) )¶
 - 
Ones= Matrix6( ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1) )¶
 - 
static Random() → Matrix6 [STATIC]¶
- Return an object where all elements are randomly set to values between 0 and 1. 
 - 
Zero= Matrix6( ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0) )¶
 - 
__abs__() → float¶
 - 
__add__((Matrix6)arg2) → Matrix6¶
 - 
__div__((int)arg2) → Matrix6¶
- __div__( (Matrix6)arg1, (float)arg2) → Matrix6 
 - 
__eq__((Matrix6)arg2) → bool¶
 - 
__getitem__((int)arg2) → Vector6¶
- __getitem__( (Matrix6)arg1, (tuple)arg2) → float 
 - 
__iadd__((Matrix6)arg2) → Matrix6¶
 - 
__idiv__((int)arg2) → Matrix6¶
- __idiv__( (Matrix6)arg1, (float)arg2) → Matrix6 
 - 
__imul__((int)arg2) → Matrix6¶
- __imul__( (Matrix6)arg1, (float)arg2) → Matrix6 - __imul__( (Matrix6)arg1, (Matrix6)arg2) → Matrix6 
 - 
__init__() → None¶
- __init__((Matrix6)other) → None - __init__((Vector6)diag) → object - __init__((Matrix3)ul, (Matrix3)ur, (Matrix3)ll, (Matrix3)lr) → object - __init__((Vector6)l0, (Vector6)l1, (Vector6)l2, (Vector6)l3, (Vector6)l4, (Vector6)l5 [, (bool)cols=False]) → object 
 - 
__isub__((Matrix6)arg2) → Matrix6¶
 - 
__itruediv__((int)arg2) → Matrix6¶
- __itruediv__( (Matrix6)arg1, (float)arg2) → Matrix6 
 - 
static __len__() → int [STATIC]¶
 - 
__mul__((int)arg2) → Matrix6¶
- __mul__( (Matrix6)arg1, (float)arg2) → Matrix6 - __mul__( (Matrix6)arg1, (Matrix6)arg2) → Matrix6 - __mul__( (Matrix6)arg1, (Vector6)arg2) → Vector6 
 - 
__ne__((Matrix6)arg2) → bool¶
 - 
__neg__() → Matrix6¶
 - 
__repr__() → str¶
 - 
__rmul__((int)arg2) → Matrix6¶
- __rmul__( (Matrix6)arg1, (float)arg2) → Matrix6 - __rmul__( (Matrix6)arg1, (Vector6)arg2) → Vector6 
 - 
__setitem__((int)arg2, (Vector6)arg3) → None¶
- __setitem__( (Matrix6)arg1, (tuple)arg2, (float)arg3) → None 
 - 
__str__() → str¶
 - 
__sub__((Matrix6)arg2) → Matrix6¶
 - 
__truediv__((int)arg2) → Matrix6¶
- __truediv__( (Matrix6)arg1, (float)arg2) → Matrix6 
 - 
col((int)col) → Vector6¶
- Return column as vector. 
 - 
cols() → int¶
- Number of columns. 
 - 
computeUnitaryPositive() → tuple¶
- Compute polar decomposition (unitary matrix U and positive semi-definite symmetric matrix P such that self=U*P). 
 - 
determinant() → float¶
- Return matrix determinant. 
 - 
diagonal() → Vector6¶
- Return diagonal as vector. 
 - 
inverse() → Matrix6¶
- Return inverted matrix. 
 - 
isApprox((Matrix6)other[, (float)prec=1e-12]) → bool¶
- Approximate comparison with precision prec. 
 - 
jacobiSVD() → tuple¶
- Compute SVD decomposition of square matrix, retuns (U,S,V) such that self=U*S*V.transpose() 
 - 
ll() → Matrix3¶
- Return lower-left 3x3 block 
 - 
lr() → Matrix3¶
- Return lower-right 3x3 block 
 - 
maxAbsCoeff() → float¶
- Maximum absolute value over all elements. 
 - 
maxCoeff() → float¶
- Maximum value over all elements. 
 - 
mean() → float¶
- Mean value over all elements. 
 - 
minCoeff() → float¶
- Minimum value over all elements. 
 - 
norm() → float¶
- Euclidean norm. 
 - 
normalize() → None¶
- Normalize this object in-place. 
 - 
normalized() → Matrix6¶
- Return normalized copy of this object 
 - 
polarDecomposition() → tuple¶
- Alias for - computeUnitaryPositive.
 - 
prod() → float¶
- Product of all elements. 
 - 
pruned([(float)absTol=1e-06]) → Matrix6¶
- Zero all elements which are greater than absTol. Negative zeros are not pruned. 
 - 
row((int)row) → Vector6¶
- Return row as vector. 
 - 
rows() → int¶
- Number of rows. 
 - 
selfAdjointEigenDecomposition() → tuple¶
- Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals). eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3 with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose(). 
 - 
spectralDecomposition() → tuple¶
- Alias for - selfAdjointEigenDecomposition.
 - 
squaredNorm() → float¶
- Square of the Euclidean norm. 
 - 
sum() → float¶
- Sum of all elements. 
 - 
trace() → float¶
- Return sum of diagonal elements. 
 - 
transpose() → Matrix6¶
- Return transposed matrix. 
 - 
ul() → Matrix3¶
- Return upper-left 3x3 block 
 - 
ur() → Matrix3¶
- Return upper-right 3x3 block 
 
- 
- 
class minieigen.Matrix6c¶
- /TODO/ - 
Identity= Matrix6c( ( 1, 0, 0, 0, 0, 0), ( 0, 1, 0, 0, 0, 0), ( 0, 0, 1, 0, 0, 0), ( 0, 0, 0, 1, 0, 0), ( 0, 0, 0, 0, 1, 0), ( 0, 0, 0, 0, 0, 1) )¶
 - 
Ones= Matrix6c( ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1) )¶
 - 
static Random() → Matrix6c [STATIC]¶
- Return an object where all elements are randomly set to values between 0 and 1. 
 - 
Zero= Matrix6c( ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0) )¶
 - 
__abs__() → float¶
 - 
__add__((Matrix6c)arg2) → Matrix6c¶
 - 
__div__((int)arg2) → Matrix6c¶
- __div__( (Matrix6c)arg1, (complex)arg2) → Matrix6c 
 - 
__eq__((Matrix6c)arg2) → bool¶
 - 
__getitem__((int)arg2) → Vector6c¶
- __getitem__( (Matrix6c)arg1, (tuple)arg2) → complex 
 - 
__iadd__((Matrix6c)arg2) → Matrix6c¶
 - 
__idiv__((int)arg2) → Matrix6c¶
- __idiv__( (Matrix6c)arg1, (complex)arg2) → Matrix6c 
 - 
__imul__((int)arg2) → Matrix6c¶
- __imul__( (Matrix6c)arg1, (complex)arg2) → Matrix6c - __imul__( (Matrix6c)arg1, (Matrix6c)arg2) → Matrix6c 
 - 
__init__() → None¶
- __init__((Matrix6c)other) → None - __init__((Vector6c)diag) → object - __init__((Matrix3c)ul, (Matrix3c)ur, (Matrix3c)ll, (Matrix3c)lr) → object - __init__((Vector6c)l0, (Vector6c)l1, (Vector6c)l2, (Vector6c)l3, (Vector6c)l4, (Vector6c)l5 [, (bool)cols=False]) → object 
 - 
__isub__((Matrix6c)arg2) → Matrix6c¶
 - 
__itruediv__((int)arg2) → Matrix6c¶
- __itruediv__( (Matrix6c)arg1, (complex)arg2) → Matrix6c 
 - 
static __len__() → int [STATIC]¶
 - 
__mul__((int)arg2) → Matrix6c¶
- __mul__( (Matrix6c)arg1, (complex)arg2) → Matrix6c - __mul__( (Matrix6c)arg1, (Matrix6c)arg2) → Matrix6c - __mul__( (Matrix6c)arg1, (Vector6c)arg2) → Vector6c 
 - 
__ne__((Matrix6c)arg2) → bool¶
 - 
__neg__() → Matrix6c¶
 - 
__repr__() → str¶
 - 
__rmul__((int)arg2) → Matrix6c¶
- __rmul__( (Matrix6c)arg1, (complex)arg2) → Matrix6c - __rmul__( (Matrix6c)arg1, (Vector6c)arg2) → Vector6c 
 - 
__setitem__((int)arg2, (Vector6c)arg3) → None¶
- __setitem__( (Matrix6c)arg1, (tuple)arg2, (complex)arg3) → None 
 - 
__str__() → str¶
 - 
__sub__((Matrix6c)arg2) → Matrix6c¶
 - 
__truediv__((int)arg2) → Matrix6c¶
- __truediv__( (Matrix6c)arg1, (complex)arg2) → Matrix6c 
 - 
col((int)col) → Vector6c¶
- Return column as vector. 
 - 
cols() → int¶
- Number of columns. 
 - 
determinant() → complex¶
- Return matrix determinant. 
 - 
diagonal() → Vector6c¶
- Return diagonal as vector. 
 - 
inverse() → Matrix6c¶
- Return inverted matrix. 
 - 
isApprox((Matrix6c)other[, (float)prec=1e-12]) → bool¶
- Approximate comparison with precision prec. 
 - 
ll() → Matrix3c¶
- Return lower-left 3x3 block 
 - 
lr() → Matrix3c¶
- Return lower-right 3x3 block 
 - 
maxAbsCoeff() → float¶
- Maximum absolute value over all elements. 
 - 
mean() → complex¶
- Mean value over all elements. 
 - 
norm() → float¶
- Euclidean norm. 
 - 
normalize() → None¶
- Normalize this object in-place. 
 - 
normalized() → Matrix6c¶
- Return normalized copy of this object 
 - 
prod() → complex¶
- Product of all elements. 
 - 
pruned([(float)absTol=1e-06]) → Matrix6c¶
- Zero all elements which are greater than absTol. Negative zeros are not pruned. 
 - 
row((int)row) → Vector6c¶
- Return row as vector. 
 - 
rows() → int¶
- Number of rows. 
 - 
squaredNorm() → float¶
- Square of the Euclidean norm. 
 - 
sum() → complex¶
- Sum of all elements. 
 - 
trace() → complex¶
- Return sum of diagonal elements. 
 - 
transpose() → Matrix6c¶
- Return transposed matrix. 
 - 
ul() → Matrix3c¶
- Return upper-left 3x3 block 
 - 
ur() → Matrix3c¶
- Return upper-right 3x3 block 
 
- 
- 
class minieigen.MatrixX¶
- XxX (dynamic-sized) float matrix. Constructed from list of rows (as VectorX). - Supported operations ( - mis a MatrixX,- fif a float/int,- vis a VectorX):- -m,- m+m,- m+=m,- m-m,- m-=m,- m*f,- f*m,- m*=f,- m/f,- m/=f,- m*m,- m*=m,- m*v,- v*m,- m==m,- m!=m.- 
static Identity((int)arg1, (int)rank) → MatrixX [STATIC]¶
- Create identity matrix with given rank (square). 
 - 
static Ones((int)rows, (int)cols) → MatrixX [STATIC]¶
- Create matrix of given dimensions where all elements are set to 1. 
 - 
static Random((int)rows, (int)cols) → MatrixX [STATIC]¶
- Create matrix with given dimensions where all elements are set to number between 0 and 1 (uniformly-distributed). 
 - 
static Zero((int)rows, (int)cols) → MatrixX [STATIC]¶
- Create zero matrix of given dimensions 
 - 
__abs__() → float¶
 - 
__add__((MatrixX)arg2) → MatrixX¶
 - 
__div__((int)arg2) → MatrixX¶
- __div__( (MatrixX)arg1, (float)arg2) → MatrixX 
 - 
__eq__((MatrixX)arg2) → bool¶
 - 
__getitem__((int)arg2) → VectorX¶
- __getitem__( (MatrixX)arg1, (tuple)arg2) → float 
 - 
__iadd__((MatrixX)arg2) → MatrixX¶
 - 
__idiv__((int)arg2) → MatrixX¶
- __idiv__( (MatrixX)arg1, (float)arg2) → MatrixX 
 - 
__imul__((int)arg2) → MatrixX¶
- __imul__( (MatrixX)arg1, (float)arg2) → MatrixX - __imul__( (MatrixX)arg1, (MatrixX)arg2) → MatrixX 
 - 
__init__() → None¶
- __init__((MatrixX)other) → None - __init__((VectorX)diag) → object - __init__( [, (VectorX)r0=VectorX() [, (VectorX)r1=VectorX() [, (VectorX)r2=VectorX() [, (VectorX)r3=VectorX() [, (VectorX)r4=VectorX() [, (VectorX)r5=VectorX() [, (VectorX)r6=VectorX() [, (VectorX)r7=VectorX() [, (VectorX)r8=VectorX() [, (VectorX)r9=VectorX() [, (bool)cols=False]]]]]]]]]]]) → object - __init__((object)rows [, (bool)cols=False]) → object 
 - 
__isub__((MatrixX)arg2) → MatrixX¶
 - 
__itruediv__((int)arg2) → MatrixX¶
- __itruediv__( (MatrixX)arg1, (float)arg2) → MatrixX 
 - 
__len__() → int¶
 - 
__mul__((int)arg2) → MatrixX¶
- __mul__( (MatrixX)arg1, (float)arg2) → MatrixX - __mul__( (MatrixX)arg1, (MatrixX)arg2) → MatrixX - __mul__( (MatrixX)arg1, (VectorX)arg2) → VectorX 
 - 
__ne__((MatrixX)arg2) → bool¶
 - 
__neg__() → MatrixX¶
 - 
__repr__() → str¶
 - 
__rmul__((int)arg2) → MatrixX¶
- __rmul__( (MatrixX)arg1, (float)arg2) → MatrixX - __rmul__( (MatrixX)arg1, (VectorX)arg2) → VectorX 
 - 
__setitem__((int)arg2, (VectorX)arg3) → None¶
- __setitem__( (MatrixX)arg1, (tuple)arg2, (float)arg3) → None 
 - 
__str__() → str¶
 - 
__sub__((MatrixX)arg2) → MatrixX¶
 - 
__truediv__((int)arg2) → MatrixX¶
- __truediv__( (MatrixX)arg1, (float)arg2) → MatrixX 
 - 
col((int)col) → VectorX¶
- Return column as vector. 
 - 
cols() → int¶
- Number of columns. 
 - 
computeUnitaryPositive() → tuple¶
- Compute polar decomposition (unitary matrix U and positive semi-definite symmetric matrix P such that self=U*P). 
 - 
determinant() → float¶
- Return matrix determinant. 
 - 
diagonal() → VectorX¶
- Return diagonal as vector. 
 - 
inverse() → MatrixX¶
- Return inverted matrix. 
 - 
isApprox((MatrixX)other[, (float)prec=1e-12]) → bool¶
- Approximate comparison with precision prec. 
 - 
jacobiSVD() → tuple¶
- Compute SVD decomposition of square matrix, retuns (U,S,V) such that self=U*S*V.transpose() 
 - 
maxAbsCoeff() → float¶
- Maximum absolute value over all elements. 
 - 
maxCoeff() → float¶
- Maximum value over all elements. 
 - 
mean() → float¶
- Mean value over all elements. 
 - 
minCoeff() → float¶
- Minimum value over all elements. 
 - 
norm() → float¶
- Euclidean norm. 
 - 
normalize() → None¶
- Normalize this object in-place. 
 - 
normalized() → MatrixX¶
- Return normalized copy of this object 
 - 
polarDecomposition() → tuple¶
- Alias for - computeUnitaryPositive.
 - 
prod() → float¶
- Product of all elements. 
 - 
pruned([(float)absTol=1e-06]) → MatrixX¶
- Zero all elements which are greater than absTol. Negative zeros are not pruned. 
 - 
resize((int)rows, (int)cols) → None¶
- Change size of the matrix, keep values of elements which exist in the new matrix 
 - 
row((int)row) → VectorX¶
- Return row as vector. 
 - 
rows() → int¶
- Number of rows. 
 - 
selfAdjointEigenDecomposition() → tuple¶
- Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals). eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3 with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose(). 
 - 
spectralDecomposition() → tuple¶
- Alias for - selfAdjointEigenDecomposition.
 - 
squaredNorm() → float¶
- Square of the Euclidean norm. 
 - 
sum() → float¶
- Sum of all elements. 
 - 
trace() → float¶
- Return sum of diagonal elements. 
 - 
transpose() → MatrixX¶
- Return transposed matrix. 
 
- 
static 
- 
class minieigen.MatrixXc¶
- /TODO/ - 
static Identity((int)arg1, (int)rank) → MatrixXc [STATIC]¶
- Create identity matrix with given rank (square). 
 - 
static Ones((int)rows, (int)cols) → MatrixXc [STATIC]¶
- Create matrix of given dimensions where all elements are set to 1. 
 - 
static Random((int)rows, (int)cols) → MatrixXc [STATIC]¶
- Create matrix with given dimensions where all elements are set to number between 0 and 1 (uniformly-distributed). 
 - 
static Zero((int)rows, (int)cols) → MatrixXc [STATIC]¶
- Create zero matrix of given dimensions 
 - 
__abs__() → float¶
 - 
__add__((MatrixXc)arg2) → MatrixXc¶
 - 
__div__((int)arg2) → MatrixXc¶
- __div__( (MatrixXc)arg1, (complex)arg2) → MatrixXc 
 - 
__eq__((MatrixXc)arg2) → bool¶
 - 
__getitem__((int)arg2) → VectorXc¶
- __getitem__( (MatrixXc)arg1, (tuple)arg2) → complex 
 - 
__iadd__((MatrixXc)arg2) → MatrixXc¶
 - 
__idiv__((int)arg2) → MatrixXc¶
- __idiv__( (MatrixXc)arg1, (complex)arg2) → MatrixXc 
 - 
__imul__((int)arg2) → MatrixXc¶
- __imul__( (MatrixXc)arg1, (complex)arg2) → MatrixXc - __imul__( (MatrixXc)arg1, (MatrixXc)arg2) → MatrixXc 
 - 
__init__() → None¶
- __init__((MatrixXc)other) → None - __init__((VectorXc)diag) → object - __init__( [, (VectorXc)r0=VectorXc() [, (VectorXc)r1=VectorXc() [, (VectorXc)r2=VectorXc() [, (VectorXc)r3=VectorXc() [, (VectorXc)r4=VectorXc() [, (VectorXc)r5=VectorXc() [, (VectorXc)r6=VectorXc() [, (VectorXc)r7=VectorXc() [, (VectorXc)r8=VectorXc() [, (VectorXc)r9=VectorXc() [, (bool)cols=False]]]]]]]]]]]) → object - __init__((object)rows [, (bool)cols=False]) → object 
 - 
__isub__((MatrixXc)arg2) → MatrixXc¶
 - 
__itruediv__((int)arg2) → MatrixXc¶
- __itruediv__( (MatrixXc)arg1, (complex)arg2) → MatrixXc 
 - 
__len__() → int¶
 - 
__mul__((int)arg2) → MatrixXc¶
- __mul__( (MatrixXc)arg1, (complex)arg2) → MatrixXc - __mul__( (MatrixXc)arg1, (MatrixXc)arg2) → MatrixXc - __mul__( (MatrixXc)arg1, (VectorXc)arg2) → VectorXc 
 - 
__ne__((MatrixXc)arg2) → bool¶
 - 
__neg__() → MatrixXc¶
 - 
__repr__() → str¶
 - 
__rmul__((int)arg2) → MatrixXc¶
- __rmul__( (MatrixXc)arg1, (complex)arg2) → MatrixXc - __rmul__( (MatrixXc)arg1, (VectorXc)arg2) → VectorXc 
 - 
__setitem__((int)arg2, (VectorXc)arg3) → None¶
- __setitem__( (MatrixXc)arg1, (tuple)arg2, (complex)arg3) → None 
 - 
__str__() → str¶
 - 
__sub__((MatrixXc)arg2) → MatrixXc¶
 - 
__truediv__((int)arg2) → MatrixXc¶
- __truediv__( (MatrixXc)arg1, (complex)arg2) → MatrixXc 
 - 
col((int)col) → VectorXc¶
- Return column as vector. 
 - 
cols() → int¶
- Number of columns. 
 - 
determinant() → complex¶
- Return matrix determinant. 
 - 
diagonal() → VectorXc¶
- Return diagonal as vector. 
 - 
inverse() → MatrixXc¶
- Return inverted matrix. 
 - 
isApprox((MatrixXc)other[, (float)prec=1e-12]) → bool¶
- Approximate comparison with precision prec. 
 - 
maxAbsCoeff() → float¶
- Maximum absolute value over all elements. 
 - 
mean() → complex¶
- Mean value over all elements. 
 - 
norm() → float¶
- Euclidean norm. 
 - 
normalize() → None¶
- Normalize this object in-place. 
 - 
normalized() → MatrixXc¶
- Return normalized copy of this object 
 - 
prod() → complex¶
- Product of all elements. 
 - 
pruned([(float)absTol=1e-06]) → MatrixXc¶
- Zero all elements which are greater than absTol. Negative zeros are not pruned. 
 - 
resize((int)rows, (int)cols) → None¶
- Change size of the matrix, keep values of elements which exist in the new matrix 
 - 
row((int)row) → VectorXc¶
- Return row as vector. 
 - 
rows() → int¶
- Number of rows. 
 - 
squaredNorm() → float¶
- Square of the Euclidean norm. 
 - 
sum() → complex¶
- Sum of all elements. 
 - 
trace() → complex¶
- Return sum of diagonal elements. 
 - 
transpose() → MatrixXc¶
- Return transposed matrix. 
 
- 
static 
- 
class minieigen.Quaternion¶
- Quaternion representing rotation. - Supported operations ( - qis a Quaternion,- vis a Vector3):- q*q(rotation composition),- q*=q,- q*v(rotating- vby- q),- q==q,- q!=q.- Static attributes: - Identity.- Note - Quaternion is represented as axis-angle when printed (e.g. - Identityis- Quaternion((1,0,0),0), and can also be constructed from the axis-angle representation. This is however different from the data stored inside, which can be accessed by indices- [0](\(x\)),- [1](\(y\)),- [2](\(z\)),- [3](\(w\)). To obtain axis-angle programatically, use- Quaternion.toAxisAnglewhich returns the tuple.- 
Identity= Quaternion((1,0,0),0)¶
 - 
Rotate((Vector3)v) → Vector3¶
 - 
__abs__() → float¶
 - 
__eq__((Quaternion)arg2) → bool¶
 - 
__getitem__((int)arg2) → float¶
 - 
__imul__((Quaternion)arg2) → object¶
 - 
__init__() → None¶
- __init__((Vector3)axis, (float)angle) → object - __init__((float)angle, (Vector3)axis) → object - __init__((Vector3)u, (Vector3)v) → object - __init__((float)w, (float)x, (float)y, (float)z) → None :
- Initialize from coefficients. - Note - The order of coefficients is w, x, y, z. The [] operator numbers them differently, 0...4 for x y z w! 
 - __init__((Matrix3)rotMatrix) → None - __init__((Quaternion)other) → None 
 - 
static __len__() → int [STATIC]¶
 - 
__mul__((Quaternion)arg2) → object¶
- __mul__( (Quaternion)arg1, (Vector3)arg2) → object 
 - 
__ne__((Quaternion)arg2) → bool¶
 - 
__repr__() → str¶
 - 
__setitem__((int)arg2, (float)arg3) → None¶
 - 
__str__() → str¶
 - 
__sub__((Quaternion)arg2) → VectorX¶
 - 
angularDistance((Quaternion)arg2) → float¶
 - 
conjugate() → Quaternion¶
 - 
inverse() → Quaternion¶
 - 
norm() → float¶
 - 
normalize() → None¶
 - 
normalized() → Quaternion¶
 - 
setFromTwoVectors((Vector3)u, (Vector3)v) → None¶
 - 
slerp((float)t, (Quaternion)other) → Quaternion¶
 - 
toAngleAxis() → tuple¶
 - 
toAxisAngle() → tuple¶
 - 
toRotationMatrix() → Matrix3¶
 - 
toRotationVector() → Vector3¶
 
- 
- 
class minieigen.Vector2¶
- 3-dimensional float vector. - Supported operations ( - fif a float/int,- vis a Vector3):- -v,- v+v,- v+=v,- v-v,- v-=v,- v*f,- f*v,- v*=f,- v/f,- v/=f,- v==v,- v!=v.- Implicit conversion from sequence (list, tuple, ...) of 2 floats. - Static attributes: - Zero,- Ones,- UnitX,- UnitY.- 
Identity= Vector2(1,0)¶
 - 
Ones= Vector2(1,1)¶
 - 
static Random() → Vector2 [STATIC]¶
- Return an object where all elements are randomly set to values between 0 and 1. 
 - 
static Unit((int)arg1) → Vector2 [STATIC]¶
 - 
UnitX= Vector2(1,0)¶
 - 
UnitY= Vector2(0,1)¶
 - 
Zero= Vector2(0,0)¶
 - 
__abs__() → float¶
 - 
__add__((Vector2)arg2) → Vector2¶
 - 
__div__((int)arg2) → Vector2¶
- __div__( (Vector2)arg1, (float)arg2) → Vector2 
 - 
__eq__((Vector2)arg2) → bool¶
 - 
__getitem__((int)arg2) → float¶
 - 
__iadd__((Vector2)arg2) → Vector2¶
 - 
__idiv__((int)arg2) → Vector2¶
- __idiv__( (Vector2)arg1, (float)arg2) → Vector2 
 - 
__imul__((int)arg2) → Vector2¶
- __imul__( (Vector2)arg1, (float)arg2) → Vector2 
 - 
__init__() → None¶
- __init__((Vector2)other) → None - __init__((float)x, (float)y) → None 
 - 
__isub__((Vector2)arg2) → Vector2¶
 - 
__itruediv__((int)arg2) → Vector2¶
- __itruediv__( (Vector2)arg1, (float)arg2) → Vector2 
 - 
static __len__() → int [STATIC]¶
 - 
__mul__((int)arg2) → Vector2¶
- __mul__( (Vector2)arg1, (float)arg2) → Vector2 
 - 
__ne__((Vector2)arg2) → bool¶
 - 
__neg__() → Vector2¶
 - 
__repr__() → str¶
 - 
__rmul__((int)arg2) → Vector2¶
- __rmul__( (Vector2)arg1, (float)arg2) → Vector2 
 - 
__setitem__((int)arg2, (float)arg3) → None¶
 - 
__str__() → str¶
 - 
__sub__((Vector2)arg2) → Vector2¶
 - 
__truediv__((int)arg2) → Vector2¶
- __truediv__( (Vector2)arg1, (float)arg2) → Vector2 
 - 
asDiagonal() → object¶
- Return diagonal matrix with this vector on the diagonal. 
 - 
cols() → int¶
- Number of columns. 
 - 
dot((Vector2)other) → float¶
- Dot product with other. 
 - 
isApprox((Vector2)other[, (float)prec=1e-12]) → bool¶
- Approximate comparison with precision prec. 
 - 
maxAbsCoeff() → float¶
- Maximum absolute value over all elements. 
 - 
maxCoeff() → float¶
- Maximum value over all elements. 
 - 
mean() → float¶
- Mean value over all elements. 
 - 
minCoeff() → float¶
- Minimum value over all elements. 
 - 
norm() → float¶
- Euclidean norm. 
 - 
normalize() → None¶
- Normalize this object in-place. 
 - 
normalized() → Vector2¶
- Return normalized copy of this object 
 - 
outer((Vector2)other) → object¶
- Outer product with other. 
 - 
prod() → float¶
- Product of all elements. 
 - 
pruned([(float)absTol=1e-06]) → Vector2¶
- Zero all elements which are greater than absTol. Negative zeros are not pruned. 
 - 
rows() → int¶
- Number of rows. 
 - 
squaredNorm() → float¶
- Square of the Euclidean norm. 
 - 
sum() → float¶
- Sum of all elements. 
 
- 
- 
class minieigen.Vector2c¶
- /TODO/ - 
Identity= Vector2c(1,0)¶
 - 
Ones= Vector2c(1,1)¶
 - 
static Random() → Vector2c [STATIC]¶
- Return an object where all elements are randomly set to values between 0 and 1. 
 - 
static Unit((int)arg1) → Vector2c [STATIC]¶
 - 
UnitX= Vector2c(1,0)¶
 - 
UnitY= Vector2c(0,1)¶
 - 
Zero= Vector2c(0,0)¶
 - 
__abs__() → float¶
 - 
__add__((Vector2c)arg2) → Vector2c¶
 - 
__div__((int)arg2) → Vector2c¶
- __div__( (Vector2c)arg1, (complex)arg2) → Vector2c 
 - 
__eq__((Vector2c)arg2) → bool¶
 - 
__getitem__((int)arg2) → complex¶
 - 
__iadd__((Vector2c)arg2) → Vector2c¶
 - 
__idiv__((int)arg2) → Vector2c¶
- __idiv__( (Vector2c)arg1, (complex)arg2) → Vector2c 
 - 
__imul__((int)arg2) → Vector2c¶
- __imul__( (Vector2c)arg1, (complex)arg2) → Vector2c 
 - 
__init__() → None¶
- __init__((Vector2c)other) → None - __init__((complex)x, (complex)y) → None 
 - 
__isub__((Vector2c)arg2) → Vector2c¶
 - 
__itruediv__((int)arg2) → Vector2c¶
- __itruediv__( (Vector2c)arg1, (complex)arg2) → Vector2c 
 - 
static __len__() → int [STATIC]¶
 - 
__mul__((int)arg2) → Vector2c¶
- __mul__( (Vector2c)arg1, (complex)arg2) → Vector2c 
 - 
__ne__((Vector2c)arg2) → bool¶
 - 
__neg__() → Vector2c¶
 - 
__repr__() → str¶
 - 
__rmul__((int)arg2) → Vector2c¶
- __rmul__( (Vector2c)arg1, (complex)arg2) → Vector2c 
 - 
__setitem__((int)arg2, (complex)arg3) → None¶
 - 
__str__() → str¶
 - 
__sub__((Vector2c)arg2) → Vector2c¶
 - 
__truediv__((int)arg2) → Vector2c¶
- __truediv__( (Vector2c)arg1, (complex)arg2) → Vector2c 
 - 
asDiagonal() → object¶
- Return diagonal matrix with this vector on the diagonal. 
 - 
cols() → int¶
- Number of columns. 
 - 
dot((Vector2c)other) → complex¶
- Dot product with other. 
 - 
isApprox((Vector2c)other[, (float)prec=1e-12]) → bool¶
- Approximate comparison with precision prec. 
 - 
maxAbsCoeff() → float¶
- Maximum absolute value over all elements. 
 - 
mean() → complex¶
- Mean value over all elements. 
 - 
norm() → float¶
- Euclidean norm. 
 - 
normalize() → None¶
- Normalize this object in-place. 
 - 
normalized() → Vector2c¶
- Return normalized copy of this object 
 - 
outer((Vector2c)other) → object¶
- Outer product with other. 
 - 
prod() → complex¶
- Product of all elements. 
 - 
pruned([(float)absTol=1e-06]) → Vector2c¶
- Zero all elements which are greater than absTol. Negative zeros are not pruned. 
 - 
rows() → int¶
- Number of rows. 
 - 
squaredNorm() → float¶
- Square of the Euclidean norm. 
 - 
sum() → complex¶
- Sum of all elements. 
 
- 
- 
class minieigen.Vector2i¶
- 2-dimensional integer vector. - Supported operations ( - iif an int,- vis a Vector2i):- -v,- v+v,- v+=v,- v-v,- v-=v,- v*i,- i*v,- v*=i,- v==v,- v!=v.- Implicit conversion from sequence (list, tuple, ...) of 2 integers. - Static attributes: - Zero,- Ones,- UnitX,- UnitY.- 
Identity= Vector2i(1,0)¶
 - 
Ones= Vector2i(1,1)¶
 - 
static Random() → Vector2i [STATIC]¶
- Return an object where all elements are randomly set to values between 0 and 1. 
 - 
static Unit((int)arg1) → Vector2i [STATIC]¶
 - 
UnitX= Vector2i(1,0)¶
 - 
UnitY= Vector2i(0,1)¶
 - 
Zero= Vector2i(0,0)¶
 - 
__add__((Vector2i)arg2) → Vector2i¶
 - 
__eq__((Vector2i)arg2) → bool¶
 - 
__getitem__((int)arg2) → int¶
 - 
__iadd__((Vector2i)arg2) → Vector2i¶
 - 
__imul__((int)arg2) → Vector2i¶
 - 
__init__() → None¶
- __init__((Vector2i)other) → None - __init__((int)x, (int)y) → None 
 - 
__isub__((Vector2i)arg2) → Vector2i¶
 - 
static __len__() → int [STATIC]¶
 - 
__mul__((int)arg2) → Vector2i¶
 - 
__ne__((Vector2i)arg2) → bool¶
 - 
__neg__() → Vector2i¶
 - 
__repr__() → str¶
 - 
__rmul__((int)arg2) → Vector2i¶
 - 
__setitem__((int)arg2, (int)arg3) → None¶
 - 
__str__() → str¶
 - 
__sub__((Vector2i)arg2) → Vector2i¶
 - 
asDiagonal() → object¶
- Return diagonal matrix with this vector on the diagonal. 
 - 
cols() → int¶
- Number of columns. 
 - 
dot((Vector2i)other) → int¶
- Dot product with other. 
 - 
isApprox((Vector2i)other[, (int)prec=0]) → bool¶
- Approximate comparison with precision prec. 
 - 
maxAbsCoeff() → int¶
- Maximum absolute value over all elements. 
 - 
maxCoeff() → int¶
- Maximum value over all elements. 
 - 
mean() → int¶
- Mean value over all elements. 
 - 
minCoeff() → int¶
- Minimum value over all elements. 
 - 
outer((Vector2i)other) → object¶
- Outer product with other. 
 - 
prod() → int¶
- Product of all elements. 
 - 
rows() → int¶
- Number of rows. 
 - 
sum() → int¶
- Sum of all elements. 
 
- 
- 
class minieigen.Vector3¶
- 3-dimensional float vector. - Supported operations ( - fif a float/int,- vis a Vector3):- -v,- v+v,- v+=v,- v-v,- v-=v,- v*f,- f*v,- v*=f,- v/f,- v/=f,- v==v,- v!=v, plus operations with- Matrix3and- Quaternion.- Implicit conversion from sequence (list, tuple, ...) of 3 floats. - Static attributes: - Zero,- Ones,- UnitX,- UnitY,- UnitZ.- 
Identity= Vector3(1,0,0)¶
 - 
Ones= Vector3(1,1,1)¶
 - 
static Random() → Vector3 [STATIC]¶
- Return an object where all elements are randomly set to values between 0 and 1. 
 - 
static Unit((int)arg1) → Vector3 [STATIC]¶
 - 
UnitX= Vector3(1,0,0)¶
 - 
UnitY= Vector3(0,1,0)¶
 - 
UnitZ= Vector3(0,0,1)¶
 - 
Zero= Vector3(0,0,0)¶
 - 
__abs__() → float¶
 - 
__add__((Vector3)arg2) → Vector3¶
 - 
__div__((int)arg2) → Vector3¶
- __div__( (Vector3)arg1, (float)arg2) → Vector3 
 - 
__eq__((Vector3)arg2) → bool¶
 - 
__getitem__((int)arg2) → float¶
 - 
__iadd__((Vector3)arg2) → Vector3¶
 - 
__idiv__((int)arg2) → Vector3¶
- __idiv__( (Vector3)arg1, (float)arg2) → Vector3 
 - 
__imul__((int)arg2) → Vector3¶
- __imul__( (Vector3)arg1, (float)arg2) → Vector3 
 - 
__init__() → None¶
- __init__((Vector3)other) → None - __init__((float)x, (float)y, (float)z) → None 
 - 
__isub__((Vector3)arg2) → Vector3¶
 - 
__itruediv__((int)arg2) → Vector3¶
- __itruediv__( (Vector3)arg1, (float)arg2) → Vector3 
 - 
static __len__() → int [STATIC]¶
 - 
__mul__((int)arg2) → Vector3¶
- __mul__( (Vector3)arg1, (float)arg2) → Vector3 
 - 
__ne__((Vector3)arg2) → bool¶
 - 
__neg__() → Vector3¶
 - 
__repr__() → str¶
 - 
__rmul__((int)arg2) → Vector3¶
- __rmul__( (Vector3)arg1, (float)arg2) → Vector3 
 - 
__setitem__((int)arg2, (float)arg3) → None¶
 - 
__str__() → str¶
 - 
__sub__((Vector3)arg2) → Vector3¶
 - 
__truediv__((int)arg2) → Vector3¶
- __truediv__( (Vector3)arg1, (float)arg2) → Vector3 
 - 
asDiagonal() → Matrix3¶
- Return diagonal matrix with this vector on the diagonal. 
 - 
cols() → int¶
- Number of columns. 
 - 
cross((Vector3)arg2) → Vector3¶
 - 
dot((Vector3)other) → float¶
- Dot product with other. 
 - 
isApprox((Vector3)other[, (float)prec=1e-12]) → bool¶
- Approximate comparison with precision prec. 
 - 
maxAbsCoeff() → float¶
- Maximum absolute value over all elements. 
 - 
maxCoeff() → float¶
- Maximum value over all elements. 
 - 
mean() → float¶
- Mean value over all elements. 
 - 
minCoeff() → float¶
- Minimum value over all elements. 
 - 
norm() → float¶
- Euclidean norm. 
 - 
normalize() → None¶
- Normalize this object in-place. 
 - 
normalized() → Vector3¶
- Return normalized copy of this object 
 - 
outer((Vector3)other) → Matrix3¶
- Outer product with other. 
 - 
prod() → float¶
- Product of all elements. 
 - 
pruned([(float)absTol=1e-06]) → Vector3¶
- Zero all elements which are greater than absTol. Negative zeros are not pruned. 
 - 
rows() → int¶
- Number of rows. 
 - 
squaredNorm() → float¶
- Square of the Euclidean norm. 
 - 
sum() → float¶
- Sum of all elements. 
 - 
xy() → Vector2¶
 - 
xz() → Vector2¶
 - 
yx() → Vector2¶
 - 
yz() → Vector2¶
 - 
zx() → Vector2¶
 - 
zy() → Vector2¶
 
- 
- 
class minieigen.Vector3c¶
- /TODO/ - 
Identity= Vector3c(1,0,0)¶
 - 
Ones= Vector3c(1,1,1)¶
 - 
static Random() → Vector3c [STATIC]¶
- Return an object where all elements are randomly set to values between 0 and 1. 
 - 
static Unit((int)arg1) → Vector3c [STATIC]¶
 - 
UnitX= Vector3c(1,0,0)¶
 - 
UnitY= Vector3c(0,1,0)¶
 - 
UnitZ= Vector3c(0,0,1)¶
 - 
Zero= Vector3c(0,0,0)¶
 - 
__abs__() → float¶
 - 
__add__((Vector3c)arg2) → Vector3c¶
 - 
__div__((int)arg2) → Vector3c¶
- __div__( (Vector3c)arg1, (complex)arg2) → Vector3c 
 - 
__eq__((Vector3c)arg2) → bool¶
 - 
__getitem__((int)arg2) → complex¶
 - 
__iadd__((Vector3c)arg2) → Vector3c¶
 - 
__idiv__((int)arg2) → Vector3c¶
- __idiv__( (Vector3c)arg1, (complex)arg2) → Vector3c 
 - 
__imul__((int)arg2) → Vector3c¶
- __imul__( (Vector3c)arg1, (complex)arg2) → Vector3c 
 - 
__init__() → None¶
- __init__((Vector3c)other) → None - __init__((complex)x, (complex)y, (complex)z) → None 
 - 
__isub__((Vector3c)arg2) → Vector3c¶
 - 
__itruediv__((int)arg2) → Vector3c¶
- __itruediv__( (Vector3c)arg1, (complex)arg2) → Vector3c 
 - 
static __len__() → int [STATIC]¶
 - 
__mul__((int)arg2) → Vector3c¶
- __mul__( (Vector3c)arg1, (complex)arg2) → Vector3c 
 - 
__ne__((Vector3c)arg2) → bool¶
 - 
__neg__() → Vector3c¶
 - 
__repr__() → str¶
 - 
__rmul__((int)arg2) → Vector3c¶
- __rmul__( (Vector3c)arg1, (complex)arg2) → Vector3c 
 - 
__setitem__((int)arg2, (complex)arg3) → None¶
 - 
__str__() → str¶
 - 
__sub__((Vector3c)arg2) → Vector3c¶
 - 
__truediv__((int)arg2) → Vector3c¶
- __truediv__( (Vector3c)arg1, (complex)arg2) → Vector3c 
 - 
asDiagonal() → Matrix3c¶
- Return diagonal matrix with this vector on the diagonal. 
 - 
cols() → int¶
- Number of columns. 
 - 
cross((Vector3c)arg2) → Vector3c¶
 - 
dot((Vector3c)other) → complex¶
- Dot product with other. 
 - 
isApprox((Vector3c)other[, (float)prec=1e-12]) → bool¶
- Approximate comparison with precision prec. 
 - 
maxAbsCoeff() → float¶
- Maximum absolute value over all elements. 
 - 
mean() → complex¶
- Mean value over all elements. 
 - 
norm() → float¶
- Euclidean norm. 
 - 
normalize() → None¶
- Normalize this object in-place. 
 - 
normalized() → Vector3c¶
- Return normalized copy of this object 
 - 
outer((Vector3c)other) → Matrix3c¶
- Outer product with other. 
 - 
prod() → complex¶
- Product of all elements. 
 - 
pruned([(float)absTol=1e-06]) → Vector3c¶
- Zero all elements which are greater than absTol. Negative zeros are not pruned. 
 - 
rows() → int¶
- Number of rows. 
 - 
squaredNorm() → float¶
- Square of the Euclidean norm. 
 - 
sum() → complex¶
- Sum of all elements. 
 - 
xy() → Vector2c¶
 - 
xz() → Vector2c¶
 - 
yx() → Vector2c¶
 - 
yz() → Vector2c¶
 - 
zx() → Vector2c¶
 - 
zy() → Vector2c¶
 
- 
- 
class minieigen.Vector3i¶
- 3-dimensional integer vector. - Supported operations ( - iif an int,- vis a Vector3i):- -v,- v+v,- v+=v,- v-v,- v-=v,- v*i,- i*v,- v*=i,- v==v,- v!=v.- Implicit conversion from sequence (list, tuple, ...) of 3 integers. - Static attributes: - Zero,- Ones,- UnitX,- UnitY,- UnitZ.- 
Identity= Vector3i(1,0,0)¶
 - 
Ones= Vector3i(1,1,1)¶
 - 
static Random() → Vector3i [STATIC]¶
- Return an object where all elements are randomly set to values between 0 and 1. 
 - 
static Unit((int)arg1) → Vector3i [STATIC]¶
 - 
UnitX= Vector3i(1,0,0)¶
 - 
UnitY= Vector3i(0,1,0)¶
 - 
UnitZ= Vector3i(0,0,1)¶
 - 
Zero= Vector3i(0,0,0)¶
 - 
__add__((Vector3i)arg2) → Vector3i¶
 - 
__eq__((Vector3i)arg2) → bool¶
 - 
__getitem__((int)arg2) → int¶
 - 
__iadd__((Vector3i)arg2) → Vector3i¶
 - 
__imul__((int)arg2) → Vector3i¶
 - 
__init__() → None¶
- __init__((Vector3i)other) → None - __init__((int)x, (int)y, (int)z) → None 
 - 
__isub__((Vector3i)arg2) → Vector3i¶
 - 
static __len__() → int [STATIC]¶
 - 
__mul__((int)arg2) → Vector3i¶
 - 
__ne__((Vector3i)arg2) → bool¶
 - 
__neg__() → Vector3i¶
 - 
__repr__() → str¶
 - 
__rmul__((int)arg2) → Vector3i¶
 - 
__setitem__((int)arg2, (int)arg3) → None¶
 - 
__str__() → str¶
 - 
__sub__((Vector3i)arg2) → Vector3i¶
 - 
asDiagonal() → object¶
- Return diagonal matrix with this vector on the diagonal. 
 - 
cols() → int¶
- Number of columns. 
 - 
cross((Vector3i)arg2) → Vector3i¶
 - 
dot((Vector3i)other) → int¶
- Dot product with other. 
 - 
isApprox((Vector3i)other[, (int)prec=0]) → bool¶
- Approximate comparison with precision prec. 
 - 
maxAbsCoeff() → int¶
- Maximum absolute value over all elements. 
 - 
maxCoeff() → int¶
- Maximum value over all elements. 
 - 
mean() → int¶
- Mean value over all elements. 
 - 
minCoeff() → int¶
- Minimum value over all elements. 
 - 
outer((Vector3i)other) → object¶
- Outer product with other. 
 - 
prod() → int¶
- Product of all elements. 
 - 
rows() → int¶
- Number of rows. 
 - 
sum() → int¶
- Sum of all elements. 
 - 
xy() → Vector2i¶
 - 
xz() → Vector2i¶
 - 
yx() → Vector2i¶
 - 
yz() → Vector2i¶
 - 
zx() → Vector2i¶
 - 
zy() → Vector2i¶
 
- 
- 
class minieigen.Vector6¶
- 6-dimensional float vector. - Supported operations ( - fif a float/int,- vis a Vector6):- -v,- v+v,- v+=v,- v-v,- v-=v,- v*f,- f*v,- v*=f,- v/f,- v/=f,- v==v,- v!=v.- Implicit conversion from sequence (list, tuple, ...) of 6 floats. - Static attributes: - Zero,- Ones.- 
Identity= Vector6(1,0,0, 0,0,0)¶
 - 
Ones= Vector6(1,1,1, 1,1,1)¶
 - 
static Random() → Vector6 [STATIC]¶
- Return an object where all elements are randomly set to values between 0 and 1. 
 - 
static Unit((int)arg1) → Vector6 [STATIC]¶
 - 
Zero= Vector6(0,0,0, 0,0,0)¶
 - 
__abs__() → float¶
 - 
__add__((Vector6)arg2) → Vector6¶
 - 
__div__((int)arg2) → Vector6¶
- __div__( (Vector6)arg1, (float)arg2) → Vector6 
 - 
__eq__((Vector6)arg2) → bool¶
 - 
__getitem__((int)arg2) → float¶
 - 
__iadd__((Vector6)arg2) → Vector6¶
 - 
__idiv__((int)arg2) → Vector6¶
- __idiv__( (Vector6)arg1, (float)arg2) → Vector6 
 - 
__imul__((int)arg2) → Vector6¶
- __imul__( (Vector6)arg1, (float)arg2) → Vector6 
 - 
__init__() → None¶
- __init__((Vector6)other) → None - __init__((float)v0, (float)v1, (float)v2, (float)v3, (float)v4, (float)v5) → object - __init__((Vector3)head, (Vector3)tail) → object 
 - 
__isub__((Vector6)arg2) → Vector6¶
 - 
__itruediv__((int)arg2) → Vector6¶
- __itruediv__( (Vector6)arg1, (float)arg2) → Vector6 
 - 
static __len__() → int [STATIC]¶
 - 
__mul__((int)arg2) → Vector6¶
- __mul__( (Vector6)arg1, (float)arg2) → Vector6 
 - 
__ne__((Vector6)arg2) → bool¶
 - 
__neg__() → Vector6¶
 - 
__repr__() → str¶
 - 
__rmul__((int)arg2) → Vector6¶
- __rmul__( (Vector6)arg1, (float)arg2) → Vector6 
 - 
__setitem__((int)arg2, (float)arg3) → None¶
 - 
__str__() → str¶
 - 
__sub__((Vector6)arg2) → Vector6¶
 - 
__truediv__((int)arg2) → Vector6¶
- __truediv__( (Vector6)arg1, (float)arg2) → Vector6 
 - 
asDiagonal() → Matrix6¶
- Return diagonal matrix with this vector on the diagonal. 
 - 
cols() → int¶
- Number of columns. 
 - 
dot((Vector6)other) → float¶
- Dot product with other. 
 - 
head() → Vector3¶
 - 
isApprox((Vector6)other[, (float)prec=1e-12]) → bool¶
- Approximate comparison with precision prec. 
 - 
maxAbsCoeff() → float¶
- Maximum absolute value over all elements. 
 - 
maxCoeff() → float¶
- Maximum value over all elements. 
 - 
mean() → float¶
- Mean value over all elements. 
 - 
minCoeff() → float¶
- Minimum value over all elements. 
 - 
norm() → float¶
- Euclidean norm. 
 - 
normalize() → None¶
- Normalize this object in-place. 
 - 
normalized() → Vector6¶
- Return normalized copy of this object 
 - 
outer((Vector6)other) → Matrix6¶
- Outer product with other. 
 - 
prod() → float¶
- Product of all elements. 
 - 
pruned([(float)absTol=1e-06]) → Vector6¶
- Zero all elements which are greater than absTol. Negative zeros are not pruned. 
 - 
rows() → int¶
- Number of rows. 
 - 
squaredNorm() → float¶
- Square of the Euclidean norm. 
 - 
sum() → float¶
- Sum of all elements. 
 - 
tail() → Vector3¶
 
- 
- 
class minieigen.Vector6c¶
- /TODO/ - 
Identity= Vector6c(1,0,0, 0,0,0)¶
 - 
Ones= Vector6c(1,1,1, 1,1,1)¶
 - 
static Random() → Vector6c [STATIC]¶
- Return an object where all elements are randomly set to values between 0 and 1. 
 - 
static Unit((int)arg1) → Vector6c [STATIC]¶
 - 
Zero= Vector6c(0,0,0, 0,0,0)¶
 - 
__abs__() → float¶
 - 
__add__((Vector6c)arg2) → Vector6c¶
 - 
__div__((int)arg2) → Vector6c¶
- __div__( (Vector6c)arg1, (complex)arg2) → Vector6c 
 - 
__eq__((Vector6c)arg2) → bool¶
 - 
__getitem__((int)arg2) → complex¶
 - 
__iadd__((Vector6c)arg2) → Vector6c¶
 - 
__idiv__((int)arg2) → Vector6c¶
- __idiv__( (Vector6c)arg1, (complex)arg2) → Vector6c 
 - 
__imul__((int)arg2) → Vector6c¶
- __imul__( (Vector6c)arg1, (complex)arg2) → Vector6c 
 - 
__init__() → None¶
- __init__((Vector6c)other) → None - __init__((complex)v0, (complex)v1, (complex)v2, (complex)v3, (complex)v4, (complex)v5) → object - __init__((Vector3c)head, (Vector3c)tail) → object 
 - 
__isub__((Vector6c)arg2) → Vector6c¶
 - 
__itruediv__((int)arg2) → Vector6c¶
- __itruediv__( (Vector6c)arg1, (complex)arg2) → Vector6c 
 - 
static __len__() → int [STATIC]¶
 - 
__mul__((int)arg2) → Vector6c¶
- __mul__( (Vector6c)arg1, (complex)arg2) → Vector6c 
 - 
__ne__((Vector6c)arg2) → bool¶
 - 
__neg__() → Vector6c¶
 - 
__repr__() → str¶
 - 
__rmul__((int)arg2) → Vector6c¶
- __rmul__( (Vector6c)arg1, (complex)arg2) → Vector6c 
 - 
__setitem__((int)arg2, (complex)arg3) → None¶
 - 
__str__() → str¶
 - 
__sub__((Vector6c)arg2) → Vector6c¶
 - 
__truediv__((int)arg2) → Vector6c¶
- __truediv__( (Vector6c)arg1, (complex)arg2) → Vector6c 
 - 
asDiagonal() → Matrix6c¶
- Return diagonal matrix with this vector on the diagonal. 
 - 
cols() → int¶
- Number of columns. 
 - 
dot((Vector6c)other) → complex¶
- Dot product with other. 
 - 
head() → Vector3c¶
 - 
isApprox((Vector6c)other[, (float)prec=1e-12]) → bool¶
- Approximate comparison with precision prec. 
 - 
maxAbsCoeff() → float¶
- Maximum absolute value over all elements. 
 - 
mean() → complex¶
- Mean value over all elements. 
 - 
norm() → float¶
- Euclidean norm. 
 - 
normalize() → None¶
- Normalize this object in-place. 
 - 
normalized() → Vector6c¶
- Return normalized copy of this object 
 - 
outer((Vector6c)other) → Matrix6c¶
- Outer product with other. 
 - 
prod() → complex¶
- Product of all elements. 
 - 
pruned([(float)absTol=1e-06]) → Vector6c¶
- Zero all elements which are greater than absTol. Negative zeros are not pruned. 
 - 
rows() → int¶
- Number of rows. 
 - 
squaredNorm() → float¶
- Square of the Euclidean norm. 
 - 
sum() → complex¶
- Sum of all elements. 
 - 
tail() → Vector3c¶
 
- 
- 
class minieigen.Vector6i¶
- 6-dimensional float vector. - Supported operations ( - fif a float/int,- vis a Vector6):- -v,- v+v,- v+=v,- v-v,- v-=v,- v*f,- f*v,- v*=f,- v/f,- v/=f,- v==v,- v!=v.- Implicit conversion from sequence (list, tuple, ...) of 6 floats. - Static attributes: - Zero,- Ones.- 
Identity= Vector6i(1,0,0, 0,0,0)¶
 - 
Ones= Vector6i(1,1,1, 1,1,1)¶
 - 
static Random() → Vector6i [STATIC]¶
- Return an object where all elements are randomly set to values between 0 and 1. 
 - 
static Unit((int)arg1) → Vector6i [STATIC]¶
 - 
Zero= Vector6i(0,0,0, 0,0,0)¶
 - 
__add__((Vector6i)arg2) → Vector6i¶
 - 
__eq__((Vector6i)arg2) → bool¶
 - 
__getitem__((int)arg2) → int¶
 - 
__iadd__((Vector6i)arg2) → Vector6i¶
 - 
__imul__((int)arg2) → Vector6i¶
 - 
__init__() → None¶
- __init__((Vector6i)other) → None - __init__((int)v0, (int)v1, (int)v2, (int)v3, (int)v4, (int)v5) → object - __init__((Vector3i)head, (Vector3i)tail) → object 
 - 
__isub__((Vector6i)arg2) → Vector6i¶
 - 
static __len__() → int [STATIC]¶
 - 
__mul__((int)arg2) → Vector6i¶
 - 
__ne__((Vector6i)arg2) → bool¶
 - 
__neg__() → Vector6i¶
 - 
__repr__() → str¶
 - 
__rmul__((int)arg2) → Vector6i¶
 - 
__setitem__((int)arg2, (int)arg3) → None¶
 - 
__str__() → str¶
 - 
__sub__((Vector6i)arg2) → Vector6i¶
 - 
asDiagonal() → object¶
- Return diagonal matrix with this vector on the diagonal. 
 - 
cols() → int¶
- Number of columns. 
 - 
dot((Vector6i)other) → int¶
- Dot product with other. 
 - 
head() → Vector3i¶
 - 
isApprox((Vector6i)other[, (int)prec=0]) → bool¶
- Approximate comparison with precision prec. 
 - 
maxAbsCoeff() → int¶
- Maximum absolute value over all elements. 
 - 
maxCoeff() → int¶
- Maximum value over all elements. 
 - 
mean() → int¶
- Mean value over all elements. 
 - 
minCoeff() → int¶
- Minimum value over all elements. 
 - 
outer((Vector6i)other) → object¶
- Outer product with other. 
 - 
prod() → int¶
- Product of all elements. 
 - 
rows() → int¶
- Number of rows. 
 - 
sum() → int¶
- Sum of all elements. 
 - 
tail() → Vector3i¶
 
- 
- 
class minieigen.VectorX¶
- Dynamic-sized float vector. - Supported operations ( - fif a float/int,- vis a VectorX):- -v,- v+v,- v+=v,- v-v,- v-=v,- v*f,- f*v,- v*=f,- v/f,- v/=f,- v==v,- v!=v.- Implicit conversion from sequence (list, tuple, ...) of X floats. - 
static Ones((int)arg1) → VectorX [STATIC]¶
 - 
static Random((int)len) → VectorX [STATIC]¶
- Return vector of given length with all elements set to values between 0 and 1 randomly. 
 - 
static Unit((int)arg1, (int)arg2) → VectorX [STATIC]¶
 - 
static Zero((int)arg1) → VectorX [STATIC]¶
 - 
__abs__() → float¶
 - 
__add__((VectorX)arg2) → VectorX¶
 - 
__div__((int)arg2) → VectorX¶
- __div__( (VectorX)arg1, (float)arg2) → VectorX 
 - 
__eq__((VectorX)arg2) → bool¶
 - 
__getitem__((int)arg2) → float¶
 - 
__iadd__((VectorX)arg2) → VectorX¶
 - 
__idiv__((int)arg2) → VectorX¶
- __idiv__( (VectorX)arg1, (float)arg2) → VectorX 
 - 
__imul__((int)arg2) → VectorX¶
- __imul__( (VectorX)arg1, (float)arg2) → VectorX 
 - 
__init__() → None¶
- __init__((VectorX)other) → None - __init__((object)vv) → object 
 - 
__isub__((VectorX)arg2) → VectorX¶
 - 
__itruediv__((int)arg2) → VectorX¶
- __itruediv__( (VectorX)arg1, (float)arg2) → VectorX 
 - 
__len__() → int¶
 - 
__mul__((int)arg2) → VectorX¶
- __mul__( (VectorX)arg1, (float)arg2) → VectorX 
 - 
__ne__((VectorX)arg2) → bool¶
 - 
__neg__() → VectorX¶
 - 
__repr__() → str¶
 - 
__rmul__((int)arg2) → VectorX¶
- __rmul__( (VectorX)arg1, (float)arg2) → VectorX 
 - 
__setitem__((int)arg2, (float)arg3) → None¶
 - 
__str__() → str¶
 - 
__sub__((VectorX)arg2) → VectorX¶
 - 
__truediv__((int)arg2) → VectorX¶
- __truediv__( (VectorX)arg1, (float)arg2) → VectorX 
 - 
asDiagonal() → MatrixX¶
- Return diagonal matrix with this vector on the diagonal. 
 - 
cols() → int¶
- Number of columns. 
 - 
dot((VectorX)other) → float¶
- Dot product with other. 
 - 
isApprox((VectorX)other[, (float)prec=1e-12]) → bool¶
- Approximate comparison with precision prec. 
 - 
maxAbsCoeff() → float¶
- Maximum absolute value over all elements. 
 - 
maxCoeff() → float¶
- Maximum value over all elements. 
 - 
mean() → float¶
- Mean value over all elements. 
 - 
minCoeff() → float¶
- Minimum value over all elements. 
 - 
norm() → float¶
- Euclidean norm. 
 - 
normalize() → None¶
- Normalize this object in-place. 
 - 
normalized() → VectorX¶
- Return normalized copy of this object 
 - 
outer((VectorX)other) → MatrixX¶
- Outer product with other. 
 - 
prod() → float¶
- Product of all elements. 
 - 
pruned([(float)absTol=1e-06]) → VectorX¶
- Zero all elements which are greater than absTol. Negative zeros are not pruned. 
 - 
resize((int)arg2) → None¶
 - 
rows() → int¶
- Number of rows. 
 - 
squaredNorm() → float¶
- Square of the Euclidean norm. 
 - 
sum() → float¶
- Sum of all elements. 
 
- 
static 
- 
class minieigen.VectorXc¶
- /TODO/ - 
static Ones((int)arg1) → VectorXc [STATIC]¶
 - 
static Random((int)len) → VectorXc [STATIC]¶
- Return vector of given length with all elements set to values between 0 and 1 randomly. 
 - 
static Unit((int)arg1, (int)arg2) → VectorXc [STATIC]¶
 - 
static Zero((int)arg1) → VectorXc [STATIC]¶
 - 
__abs__() → float¶
 - 
__add__((VectorXc)arg2) → VectorXc¶
 - 
__div__((int)arg2) → VectorXc¶
- __div__( (VectorXc)arg1, (complex)arg2) → VectorXc 
 - 
__eq__((VectorXc)arg2) → bool¶
 - 
__getitem__((int)arg2) → complex¶
 - 
__iadd__((VectorXc)arg2) → VectorXc¶
 - 
__idiv__((int)arg2) → VectorXc¶
- __idiv__( (VectorXc)arg1, (complex)arg2) → VectorXc 
 - 
__imul__((int)arg2) → VectorXc¶
- __imul__( (VectorXc)arg1, (complex)arg2) → VectorXc 
 - 
__init__() → None¶
- __init__((VectorXc)other) → None - __init__((object)vv) → object 
 - 
__isub__((VectorXc)arg2) → VectorXc¶
 - 
__itruediv__((int)arg2) → VectorXc¶
- __itruediv__( (VectorXc)arg1, (complex)arg2) → VectorXc 
 - 
__len__() → int¶
 - 
__mul__((int)arg2) → VectorXc¶
- __mul__( (VectorXc)arg1, (complex)arg2) → VectorXc 
 - 
__ne__((VectorXc)arg2) → bool¶
 - 
__neg__() → VectorXc¶
 - 
__repr__() → str¶
 - 
__rmul__((int)arg2) → VectorXc¶
- __rmul__( (VectorXc)arg1, (complex)arg2) → VectorXc 
 - 
__setitem__((int)arg2, (complex)arg3) → None¶
 - 
__str__() → str¶
 - 
__sub__((VectorXc)arg2) → VectorXc¶
 - 
__truediv__((int)arg2) → VectorXc¶
- __truediv__( (VectorXc)arg1, (complex)arg2) → VectorXc 
 - 
asDiagonal() → MatrixXc¶
- Return diagonal matrix with this vector on the diagonal. 
 - 
cols() → int¶
- Number of columns. 
 - 
dot((VectorXc)other) → complex¶
- Dot product with other. 
 - 
isApprox((VectorXc)other[, (float)prec=1e-12]) → bool¶
- Approximate comparison with precision prec. 
 - 
maxAbsCoeff() → float¶
- Maximum absolute value over all elements. 
 - 
mean() → complex¶
- Mean value over all elements. 
 - 
norm() → float¶
- Euclidean norm. 
 - 
normalize() → None¶
- Normalize this object in-place. 
 - 
normalized() → VectorXc¶
- Return normalized copy of this object 
 - 
outer((VectorXc)other) → MatrixXc¶
- Outer product with other. 
 - 
prod() → complex¶
- Product of all elements. 
 - 
pruned([(float)absTol=1e-06]) → VectorXc¶
- Zero all elements which are greater than absTol. Negative zeros are not pruned. 
 - 
resize((int)arg2) → None¶
 - 
rows() → int¶
- Number of rows. 
 - 
squaredNorm() → float¶
- Square of the Euclidean norm. 
 - 
sum() → complex¶
- Sum of all elements. 
 
- 
static 
- 
minieigen.float2str((float)f[, (int)pad=0]) → str¶
- Return the shortest string representation of f which will is equal to f when converted back to float. This function is only useful in Python prior to 3.0; starting from that version, standard string conversion does just that.